Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
Environ Sci Pollut Res Int ; 29(11): 16017-16027, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1460447

ABSTRACT

The WHO characterized coronavirus disease 2019 (COVID-19) as a global pandemic. The influence of temperature on COVID-19 remains unclear. The objective of this study was to investigate the correlation between temperature and daily newly confirmed COVID-19 cases by different climate regions and temperature levels worldwide. Daily data on average temperature (AT), maximum temperature (MAXT), minimum temperature (MINT), and new COVID-19 cases were collected from 153 countries and 31 provinces of mainland China. We used the spline function method to preliminarily explore the relationship between R0 and temperature. The generalized additive model (GAM) was used to analyze the association between temperature and daily new cases of COVID-19, and a random effects meta-analysis was conducted to calculate the pooled results in different regions in the second stage. Our findings revealed that temperature was positively related to daily new cases at low temperature but negatively related to daily new cases at high temperature. When the temperature was below the smoothing plot peak, in the temperate zone or at a low temperature level (e.g., <25th percentiles), the RRs were 1.09 (95% CI: 1.04, 1.15), 1.10 (95% CI: 1.05, 1.15), and 1.14 (95% CI: 1.06, 1.23) associated with a 1°C increase in AT, respectively. Whereas temperature was above the smoothing plot peak, in a tropical zone or at a high temperature level (e.g., >75th percentiles), the RRs were 0.79 (95% CI: 0.68, 0.93), 0.60 (95% CI: 0.43, 0.83), and 0.48 (95% CI: 0.28, 0.81) associated with a 1°C increase in AT, respectively. The results were confirmed to be similar regarding MINT, MAXT, and sensitivity analysis. These findings provide preliminary evidence for the prevention and control of COVID-19 in different regions and temperature levels.


Subject(s)
COVID-19 , China , Humans , Pandemics , SARS-CoV-2 , Temperature
2.
Science of The Total Environment ; : 145992, 2021.
Article in English | ScienceDirect | ID: covidwho-1091645

ABSTRACT

Coronavirus disease 2019 (COVID-19) has become a worldwide public health threat. Many associated factors including population movement, meteorological parameters, air quality and socioeconomic conditions can affect COVID-19 transmission. However, no study has combined these various factors in a comprehensive analysis. We collected data on COVID-19 cases and the factors of interest in 340 prefectures of mainland China from 1 December 2019 to 30 April 2020. Moran's I statistic, Getis-Ord Gi⁎ statistic and Kulldorff's space-time scan statistics were used to identify spatial clusters of COVID-19, and the geographically weighted regression (GWR) model was applied to investigate the effects of the associated factors on COVID-19 incidence. A total of 67,449 laboratory-confirmed cases were reported during the study period. Wuhan city as well as its surrounding areas were the cluster areas, and January 25 to February 21, 2020, was the clustering time of COVID-19. The population outflow from Wuhan played a significant role in COVID-19 transmission, with the local coefficients varying from 14.87 to 15.02 in the 340 prefectures. Among the meteorological parameters, relative humidity and precipitation were positively associated with COVID-19 incidence, while the average wind speed showed a negative correlation, but the relationship of average temperature with COVID-19 incidence inconsistent between northern and southern China. NO2 was positively associated, and O3 was negatively associated, with COVID-19 incidence. Environment with high levels of inbound migration or travel, poor ventilation, high humidity or heavy rainfall, low temperature, and high air pollution may be favorable for the growth, reproduction and spread of SARS-CoV-2. Therefore, applying appropriate lockdown measures and travel restrictions, strengthening the ventilation of living and working environments, controlling air pollution and making sufficient preparations for a possible second wave in the relatively cold autumn and winter months may be helpful for the control and prevention of COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL